CloudReg

Vikram Chandrashekhar

Mar 02, 2023

1 Motivation

2 Pipeline Overview
3 Example Results
4 Documentation

5 Indices and tables
Python Module Index

Index

CONTENTS

49
51

53

CHAPTER
ONE

MOTIVATION

Quantifying terascale multi-modal human and animal imaging data requires scalable analysis tools. We developed
CloudReg, an automated, terascale, cloud-compliant image analysis pipeline for preprocessing and cross-modal, non-
linear registration between volumetric datasets with artifacts. CloudReg was developed using cleared murine brain
light-sheet microscopy images, but is also accurate in registering the following datasets to their respective atlases: in
vivo human and ex vivo macaque brain magnetic resonance imaging, ex vivo murine brain micro-computed tomogra-

phy.

CloudReg

2 Chapter 1. Motivation

CHAPTER
TWO

PIPELINE OVERVIEW

Store raw data Pre-process Register
multi-FOV

Transfer
to cloud Correct intensity
single-FOV locally

Launch

e
i

Stitch & Correct intensity Downsample, Invert transform,
downsample globally, upsample, register & upsample,
& apply transform to atlas & apply

CloudReg
Explore content

5 ! \

>, Cloud storage |

. . o= N o= N ! [
Visualize Rotate I 1 ! 1 ! Pre-processed multiscale volume in native space |
: 1 ! Content | ;)) :

1 :4— | delivery :4—) Pre-processed multiscale volume in atlas space i

: | | network ! : Atlas in native space :

A = : Atlas in atlas space :

\)

Fig. 1: CloudReg pipeline schematic showing example data through each step of processing. The gray box indicates

operations/services that are performed in the cloud.

CloudReg

4 Chapter 2. Pipeline Overview

CHAPTER
THREE

EXAMPLE RESULTS

CloudReg

Data size, Reference

Modality Species Voxel size
XY2) atlas name Input data Atlas transformed Data transformed Reference atlas
s to data to atlas

1.11TB,
0.585 pm x
0.585 pm x
5 pym

Allen
Reference
Atlas
7 4

16.07 GB,
CLARITY, 5.16 pm x
LaVision 5.16 ym x

5.16 ym

Allen
Reference
Atlas

166.80 GB,

1.46 pm x

1.46 pm x
5um

Allen
Reference
Atlas

33.33 GB,

in situ 13.53pum x

MicroCT 13.53pum x
13.53um

Allen
Reference

291.45 GB,
2.92 ym x
2.92 pm x

5pum

Rat

14.22 MB,
1 mm x MRICloud
1mm x
1 mm

Human

16.29 MB,

400 pm x

400 pm x
400 pm

Macaque
population-
average atlas

MRI Macaque

oL, 1dat,)

g Ea Strates Tegistra ; 3 ag
onnding atlas using CloudReg. The leftmost column of images shows the input data; Fﬁ@ﬂ&&?ﬁ@m
channel is used for samples imaged with a light-sheet microscope (LSM). The rightmost column shows the atlas par-
cellations overlaid on one hemisphere of the atlas image data. The second and third columns show the respective atlas
arcellations transformed to and overlaid on the original samples and vice-versa, respectively. CLARITY, Clear Lipid-

CHAPTER
FOUR

DOCUMENTATION

4.1 Setup

4.1.1 Setup (Cloud)

CloudReg is designed to be used in the cloud but components of the CloudReg pipeline can also be run locally. For
instructions on full local use see here. For cloud setup please see below. We chose to work with Amazon Web Services
(AWS) and the below setup instructions are for that.

Requirements

* AWS account

* TAM Role and User with credentials to access EC2 and S3

* S3 Bucket to store raw data

* S3 Bucket to store processed data (can be the same bucket as above)
* EC2 instance with Docker

» EC2 instance with MATLAB

* Local computer (used to send commands to cloud services)

(Optional) CloudFront CDN with HTTP/2 enabled for fast visualization

* (Optional) Web Application Firewall for IP-address restriction on data access.

Create AWS account

Follow instructions to create AWS account or use existing AWS account. All of the following AWS setup instructions
should be performed within the same AWS account.

https://portal.aws.amazon.com/billing/signup#/start

CloudReg

Create IAM Role

10.
11.

NS A »N

Log into AWS console

Navigate to IAM section of console

Click on Roles in the left sidebar

Click Create Role

Click AWS Service under Type of Trusted Entity
Click EC2 as the AWS Service and click Next

Next to Filter Policies, search for S3FullAccess and EC2FullAccess and click the checkbox next to both to add
them as policies to this role.

Click Next
Click Next on the Add Tags screen. Adding tags is optional.
On the Review Role screen, choose a role name, like cloudreg_role, and customize the description as you see fit.

Finally, click Create Role

Create IAM User

p—

D e A i

Log into AWS console

Navigate to IAM section of console

Click on Users in the left sidebar

Click Add User

Choose a User name like cloudreg_user, check Programmatic Access, and click Next

Click on Attach existing policies directly and search for and add S3FullAccess and EC2FullAccess, and click Next
Click Next on the Add Tags screen. Adding tags is optional. Then click Next

On the Review screen, verify the information is correct and click Create User

On the next screen, download the autogenerated password and key and keep them private and secure. We will
need these credentials later when running the pipeline.

Create S3 Bucket

Ll

e

Log into AWS console
Navigate to S3 section of console
Click Create Bucket

Choose a bucket name and be sure to choose the bucket region carefully. You will want to pick the region that is
geographically closest to you for optimal visualization speeds. Record the region you have chosen.

Uncheck Block All Public Access. We will restrict access to the data using CloudFront and a Firewall.

The remaining settings can be left as is. Click Create Bucket

Chapter 4. Documentation

https://console.aws.amazon.com/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/
https://console.aws.amazon.com/s3/

CloudReg

Set up CORS on S3 Bucket containing processed data/results

AN o

7.

Log into AWS console

Navigate to S3 section of console

Click on the S3 Bucket you would like to add CORS to.

Click on the Permissions tab

Scroll to the bottom and click Edit under Cross-origin resource sharing (CORS)

Paste the following text:

[
{
"AllowedHeaders": [
"Authorization"
1,
"AllowedMethods": [
"GET"
1,
"AllowedOrigins": [
1,
"ExposeHeaders": [],
"MaxAgeSeconds": 3000
}
]

click Save Changes

Set up Docker EC2 instance

1.
2.

Log into AWS console

Navigate to EC2 section of console

. In the left sidebar, click Instances. Make sure you change the region (top right, middle drop-down menu) to

match that of your raw data and processed data S3 buckets.

. Click Launch Instances

. In the search bar, enter the following: ami-098555c¢9b343eb09c. This is an Amazing Machine Image (AMI)

called Deep Learning AMI (Ubuntu 18.04) Version 38.0. Click Select when this AMI shows up.

. The default instance type should be 2.micro, if not choose change it to that type. Leave the remaining choices

as their defaults and click Review and Launch.

. Verify the EC2 instance information is correct and click Launch.

. When the key pair pop-up appears, select Choose an existing key pair if you have already created one, or select

Create a new key pair if you do not already have one. Follow the instructions on-screen to download and save
the key pair.

. Follow AWS tutorial to connect to this EC2 instance through the command line.

10.

Once you have connected to the instance via SSH, create the cloud-volume credentials file on the instance using
the CLI text editor of your choice.

4.1.

Setup 9

https://console.aws.amazon.com/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/ground-station/latest/ug/create-ec2-ssh-key-pair.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-connect-methods.html#ec2-instance-connect-connecting-aws-cli
https://github.com/seung-lab/cloud-volume/#aws-secretjson-and-matrix-secretjson

CloudReg

11.

12.
13.

Install ~ docker-compose by running sudo curl -L "https://github.com/docker/compose/
releases/download/1.28.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/
docker-compose; sudo chmod +x /usr/local/bin/docker-compose

Run sudo shutdown now to turn off the EC2 instance

Record the “Instance ID” of this CloudReg instance (this can be found in the EC2 console). We will need this
when running the pipeline.

Set up MATLAB EC2 instance

1.

2.

Follow instructions here on setting up MATLAB on an EC2 instance. Be sure to create this instance in the same
region as your S3 buckets. Be sure to use the same SSH key you created for the CloudReg EC2 instance.

After creating this instance, navigate to the EC2 console and record the “Instance ID” of this MATLAB instance.
We will need this when running the pipeline.

Set up AWS CloudFront

1.

5.
6.
7.

Log into AWS console

. Navigate to CloudFront section of console

2
3.
4

Click “Create Distribution” and then click “Get Started”.

. Click in the “Origin Domain Name” box and select the S3 bucket you previously created to store preprocessed

data for visualization. Once you select your S3 bucket from the drop-down menu, the Origin ID should populate
automatically.

Leave all other default parameters under “Origin Settings”.
See the video below on how to set up the remaining parameters.

After following the video, click “Create Distribution”.

NOTE: Be sure to save the CloudFront URL that is created for that distribution. It can be found at the CloudFront
console homepage after clicking on the distribution you created. It should appear next to “Domain Name”.

Set up AWS Web Application Firewall

1.

N o A »d

®©

Before setting up the Web Application Firewall, please find the IP address(es) you would like to give access to.
Oftentimes this information can be discovered by emailing IT at your institution or going to whatismyip for just
your IP address.

Log into AWS console

Navigate to WAF section of console. This link will redirec you to WAF classic in order to implement our firewall.
In the drop-down menu next to “Filter”, select “Global (CloudFront)”.

Click “Create Web ACL”.

Choose a name that is unique for your web ACL and leave the CloudWatch metric name and Region Name as is.

Click on the drop-down next “AWS resource to associate” and choose the CloudFront distribution you created
previously.

Click “Next”

To the right of “IP Match Conditions”, click “Create Condition”.

10

Chapter 4. Documentation

https://github.com/mathworks-ref-arch/matlab-on-aws
https://console.aws.amazon.com/
https://console.aws.amazon.com/cloudfront/
https://whatismyip.com
https://console.aws.amazon.com/
https://console.aws.amazon.com/wafv2/home#/webacls

CloudReg

10. Choose a unique name and leave the region as “Global”.

11. Next IP address range, input the IP range that you obtained in step 1. You can verify this range with a CIDR
calculator

12. Click “Create” at the bottom right and then click “Next”.

13. Click “Create Rule” to the right of “Add rules to web ACL”.

14. Choose a name and leave the other 2 parameters as default.

15. Under “Add conditions”, choose “does” and “originate from an IP address in”

16. Under the third drop-down, choose the rule you created in step 14.

17. Under “If a request matches all of the conditions in a rule, take the corresponding action”, choose allow.

18. Under “If a request doesn’t match any rules, take the default action” choose “block all requests that don’t match
rules”

19. Click “Review and Create” and then on the next page choose, “Confirm and create”.

Local machine setup

On a local machine of your choice follow the instructions below. The following instructions should be followed from
within a terminal window (command line). The below steps only need to be done the FIRST TIME you set up the
pipeline.

1. Install Docker
2. Make sure Docker is open and running.
3. Open a new Terminal window.

4. Pull the CloudReg docker image: docker pull neurodata/cloudreg:local

4.1.2 Setup (Local)

CloudReg is designed to be used in the cloud but components of the CloudReg pipeline can also be run locally. In-
structions for local setup are below.

Requirements

¢ Local Machine

¢ MATLAB license

Local Machine Setup

On a local machine of your choice follow the instructions below. The following instructions should be followed from
within a terminal window (command line). The below steps only need to be done the FIRST TIME you set up the
pipeline.

1. Install Docker.
2. Install MATLAB.
3. Make the matlab command available from the terminal.

4. Open a new Terminal window.

4.1. Setup 11

https://www.ipaddressguide.com/cidr
https://www.ipaddressguide.com/cidr
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://www.mathworks.com/products/get-matlab.html

CloudReg

5. Make sure Docker is open and running.

6. Pull the CloudReg Docker image: docker pull neurodata/cloudreg:local.

4.2 Run

4.2.1 Cloud

Once you have followed all instructions on the cloud setup page we can begin using CloudReg.

All of the below commands can be run from your local machine terminal and will automatically start and stop a remote
cloud server. This requires that the local machine have continued access to the internet for the period of time the
pipeline is running. This can be running in the background while you use your machine. In order to run the below
commands, raw multi-FOV data should be uploaded to raw data S3 bucket (created in setup) in COLM format . This
can be done with awscli

Preprocessing
The below steps are to run local intensity correction, stitching, global intensity corection, and upload back to S3 for
visualiztion with neuroglancer.

1. Make sure Docker is open and running

2. Open a new Terminal window

3. Start the local CloudReg Docker image in interactive mode. Replace the below parameters between “<>" with
your own. Run:

docker run --rm -v <path/to/your/input/data>:/data/raw -v <path/to/output/data>:/
—.data/processed -v <path/to/ssh/key>:/data/ssh_key -ti neurodata/cloudreg:local

4. Once the previous command finishes, run:

python -m cloudreg.scripts.run_colm_pipeline_ec2 -ssh_key_path /data/ssh_key -
—,instance_id <instance id> -input_s3_path <s3://path/to/raw/data> -output_s3_path
-»<s3://path/to/output/data> -num_channels <number of channels imaged in raw data> -
—.autofluorescence_channel <integer between 0 and max number of channels>

Replace the above parameters between “<>" with your own. More information about the COLM preprocessing param-
eters

Registration

The following commands can be used to register two samples in Neuroglancer precomputed format.
1. Make sure Docker is open and running
2. Open a new Terminal window

3. Start the local CloudReg Docker image in interactive mode. Run:

docker run --rm -v <path/to/your/input/data>:/data/raw -v <path/to/output/data>:/
—.data/processed -v <path/to/ssh/key>:/data/ssh_key -ti neurodata/cloudreg:local

Replace the above parameters between “<>" with your own.

12 Chapter 4. Documentation

https://www.nature.com/articles/nprot.2014.123
https://cloudreg.neurodata.io#cloudreg.scripts.run_registration_ec2.run_colm_pipeline_ec2
https://cloudreg.neurodata.io#cloudreg.scripts.run_registration_ec2.run_colm_pipeline_ec2
https://github.com/google/neuroglancer/blob/master/src/neuroglancer/datasource/precomputed/volume.md

CloudReg

4. Run:

python -m cloudreg.scripts.run_registration_ec2 -ssh_key_path /data/ssh_key -
—instance_id <instance id> -input_s3_path <s3://path/to/raw/data> -output_s3_path
—»<s3://path/to/output/data> -orientation <3-letter orientation scheme>

4. The above command will print out a Neuroglancer visulization link showing the affine initialization of the reg-
istration that you can view in a web browser (Chrome or Firefox).

5. If your input data and the atlas look sufficiently aligned (only rough alignment is necessary), see 5a, else
see 5b

a) If your input data and the atlas look sufficiently aligned (only rough alignment is necessary), in your
terminal type ‘y’ and hit enter at the prompt.

b) If your input data and the atlas DO NOT look sufficiently aligned, the alignment can be adjusted with
translation and rotation parameters.

More information on registration parameters

Visualization
All visualization is enabled through Neurodata’s deployment of Neuroglancer In order to visualize your data you will
need the CloudFront Domain Name created during setup.

1. Go to https://viz.neurodata.io in a web browser.

2. Click on the ‘+ on the top left of the Neuroglancer window (see image below).

o000 @ neuroglancer x +

< > C @ viz.neurodata.io/#!%7B"layout":"4panel"%2C"partialViewport":%E& %2C0%2C1%2C1%5D%7D

[u}
+

Bl

Sections ¥

3. In the window that appears on the right side, choose precomputed from the drop-down menu (see image below).

4.2. Run 13

https://cloudreg.neurodata.io#cloudreg.scripts.run_registration_ec2.run_registration
https://viz.neurodata.io
https://viz.neurodata.io

CloudReg

[X X] @ neuroglancer

& > C & vizneurodata.iof 62C"selectedLayer"

(5]

finew layer X | + new | new layer
Source|

lLocal in-memory
ns5://

N5 data source

miftiz//

lsingle NIfTI file

lobj://

Wavefront OBJ mesh file
precomputed: //

|Precomputed file-backed data source

Sections ¥

4. After ‘precomputed://’ type the S3 path to the image layer (same as output_s3_path in preprocessing step above).

L X X] @ neuroglancer
$2C"selectedLay "layer":"r ay visibl.. ¥ € i
0o

& > C @& viz.neurodata.io/#¥
(5]

- o R =
Source|
O [Sowee

precomputed: //s3://path/to/image/
channel]

Sections ¥

5. If you have CloudFront set up, you can replace the ‘s3:/° with your cloudfront domain name.

14 Chapter 4. Documentation

CloudReg

o0 0 @ neuroglancer

C' @ viz.neurodata.io/#!%
[u]
+ e
@@ [Souree|

precomputed: //<cloudfront domain
namep/path/to/image/channel

Sections ¥

6. Hit enter and click “Create Image Layer” in the botom right of the Neurglancer window.

[X] @ neuroglancer

< c @ viz.neurodata.io/#!%
x (13.53um) 999 y (13.53um) 999 z (13.5%m) 631 IO
fioge x| + poon 5

\
Source|

Y

¥ Enable default subsource set

¥ vint16-velume

¥ fbounds]

Source dimensions
x

Lower (o, o,
Upper 2000) 2000)
Scale 13.53um 13.53m 1

FENCE
1

<

13.53um
0

§

13.53um
0

suoisuaLp IndinO

Sections ¥

7. The data should start to load in 3 of the 4 quadrants. The bottom left quadrant is a 3D view of slices.

Hit ‘h’ while in a Neuroglancer window to view the help window.

4.2. Run 15

CloudReg

4.2.2 Local

Once you have followed all instructions on the local setup page we can begin using CloudReg.

Currently the local pipeline can create precomputed volumes for visualization and perform registration. Additional
scripts are available and can be found in references.

Convert 2D image series to precomputed format

1. Make sure Docker is open and running
2. Open a new Terminal window

3. Start the local CloudReg Docker image in interactive mode. Replace the below parameters between “<>" with
your own. Run:

docker run --rm -v <path/to/input/data>:/data/input -v <path/to/output/data>:/data/
—output -ti neurodata/cloudreg:local

4. Once the previous command finishes, run:

python -m cloudreg.scripts.create_precomputed_volume /data/input file:///data/
—output <voxel_size e.g. 1.0 1.0 1.0>

Where the only required input is the voxel size of the images in microns. Replace the above parameters between “<>”
with your own. More information about the precomputed volume parameters

Registration

The following commands can be used to register two image volumes.
1. Open a new Terminal window.

2. Run:

python3 -m cloudreg.scripts.registration -input_s3_path file://</path/to/local/
—volume> --output_s3_path file://</path/to/local/volume> -log_s3_path file://</
—path/to/local/volume> -orientation RIP

More information on local registration parameters

Visualization
All visualization is enabled through Neurodata’s deployment of Neuroglancer We will use a script to serve local data
for visualization with our deployment of Neuroglancer.

1. Open a new Terminal window.

2. Start the local CloudReg Docker image in interactive mode. Replace the below parameters between “<>” with
your own. Run:

docker run --rm -v <path/to/precomputed/data>:/data/input -p 8887:8887 -p 9000:9000.
—-ti neurodata/cloudreg:local

3. Run:

16 Chapter 4. Documentation

https://cloudreg.neurodata.io#cloudreg.scripts.create_precomputed_volume
https://cloudreg.neurodata.io#cloudreg.scripts.registration
https://viz.neurodata.io

CloudReg

cd ../neuroglancer; python cors_webserver.py -d /data/input/

4. Now, in Google Chrome, go to https://viz.neurodata.io

5. Click on the ‘+ on the top left of the Neuroglancer window (see image below).

[X X) @ neuroglancer X +

& > C @ viz.neurodata.io/#%7B"layout":"4panel"%2C" partialView
(]

Sections ¥

6. In the window that appears on the right side, choose precomputed from the drop-down menu (see image below).

4.2. Run 17

https://viz.neurodata.io

CloudReg

@ neuroglancer

« > C e
o

finowirer] +

viz.neurodata.io/#!%7B"

Sections ¥

local
in

7 After ‘precomputed://’

. type the
‘http://localhost:9000° (same as

output_s3_path

@ neuroglancer

@& viz.neurodata.io/#!%

+

{lnew layer X

Sections ¥

Hit enter and click “Create Image Layer” in

%2C"selectedLayer" ayer

new | new layer
Source|

boss://
lbossDB: Block & Object Storage

lLocal in-memory

ns5://

N5 data source
1/

NIfTI file
lobj
Wavefront OBJ mesh file
[precomputed://
|Precomputed file-backed data source

to the image

precomputed

layer
volume

preceded by
step above).

path
create

Olayer"%7D electedLayer":%7B"layer":"new%20laye

new | new layer

precomputed://http://localhost:9000/
<path/to/data>|

the botom right of the Neurglancer window.

18

Chapter 4. Documentation

CloudReg

@ neuroglancer

= C @ viz.neurodata.io,
x (13.53um) 999 y (13.53;m) 999 =z (13.53um) 631 I3
flose x| +

y

] (Sovreel

¥ Enable default subsource set

¥ uintt6-velume

¥ [bounds} default-annotations
Source dimensions

Lower

Upper

Scale 13.53um 13.53um 1

°
s
g
g
s
3
2
o
3
2

10. The data should start to load in 3 of the 4 quadrants. The bottom left quadrant is a 3D view of slices.

Hit ‘h’ while in a Neuroglancer window to view the help window.

4.3 Reference

4.3.1 COLM pipeline

cloudreg.scripts.run_colm_pipeline_ec2.run_colm_pipeline(ssh_key_path, instance_id, input_s3_path,

output_s3_path, num_channels,
autofluorescence_channel,
log_s3_path=None,
instance_type="r5d.24xlarge")

Run COLM pipeline on EC2 instance

Parameters

ssh_key_path (str) — Local path to ssh key needed for this server
instance_id (str) — ID of the EC2 instance to run pipeline on
input_s3_path (str) — S3 Path to raw data

output_s3_path (str) — S3 path to store precomputed volume. Volume is stored at out-
put_s3_path/channel for each channel.

num_channels (int) — Number of channels in this volume

autofluorescence_channel (int) — Autofluorescence channel number

4.3. Reference

19

CloudReg

* log_s3_path (str, optional)- S3 path to store intermediates including vignetting cor-
rection and Terastitcher files. Defaults to None.

* instance_type (str, optional)-— AWS EC2 instance type. Defaults to “r5d.24xlarge”.

4.3.2 Intensity Correction

cloudreg.scripts.correct_raw_data.correct_raw_data(raw_data_path, channel, subsample_factor=2,
log_s3_path=None,
background_correction=True)

Correct vignetting artifact in raw data
Parameters
e raw_data_path (str) — Path to raw data
» channel (int) — Channel number to prcess

* subsample_factor (int, optional) — Factor to subsample the raw data by to compute
vignetting correction. Defaults to 2.

* log_s3_path (str, optional)— S3 path to store intermediates at. Defaults to None.

* background_correction (bool, optional) — If True, subtract estimated background
value from all tiles. Defaults to True.

cloudreg.scripts.correct_raw_data.correct_tile(raw_tile_path, bias, background_value=None)

Apply vignetting corrrection to single tile
Parameters
e raw_tile_path (str) — Path to raw data image
* bias (np.ndarray) — Vignetting correction that is multiplied by image
* background_value (float, optional) - Background value. Defaults to None.

cloudreg.scripts.correct_raw_data.correct_tiles(tiles, bias, background_value=None)

Correct a list of tiles
Parameters
» tiles (1ist of str) - Paths to raw data images to correct
* bias (np.ndarray) — Vignetting correction to multiply by raw data

* background_value (float, optional)— Background value to subtract from raw data.
Defaults to None.

cloudreg.scripts.correct_raw_data.get_background_value (raw_data_path)
Estimate background value for COLM data

Parameters
raw_data_path (str) — Path to raw data

Returns
Estimated value of background in image

Return type
float

20 Chapter 4. Documentation

CloudReg

cloudreg.scripts.correct_raw_data.sum_tiles(files)
Sum the images in files together

Parameters
files (1ist of str)- Local Paths to images to sum

Returns
Sum of the images in files

Return type
np.ndarray

cloudreg.scripts.correct_stitched_data.correct_stitched_data(data_s3_path, out_s3_path,
resolution=15, num_procs=12)

Correct illumination inhomogeneity in stitched precomputed data on S3 and upload result back to S3 as precom-
puted

Parameters

» data_s3_path (str) — S3 path to precomputed volume that needs to be illumination cor-
rected

* out_s3_path (str) — S3 path to store corrected precomputed volume

e resolution (int, optional) — Resolution in microns at which illumination correction
is computed. Defaults to 15.

* num_procs (int, optional) — Number of proceses to use when uploading data to S3.
Defaults to 12.

cloudreg.scripts.correct_stitched_data.process_slice(bias_slice, z, data_orig_path, data_bc_path)

Correct and upload a single slice of data
Parameters
e bias_slice (sitk.Image) — Slice of illumination correction
* z (int) — Z slice of data to apply correction to
» data_orig_path (str) — S3 path to source data that needs to be corrected

» data_bc_path (str) — S3 path where corrected data will be stored

4.3.3 Cloud Storage Input/Output

cloudreg.scripts.download_raw_data.download_raw_data(in_bucket_path, channel, outdir)
Download COLM raw data from S3 to local storage

Parameters
e in_bucket_path (str) — Name of S3 bucket where raw dadta live at
e channel (int) — Channel number to process
* outdir (str) — Local path to store raw data

cloudreg.scripts.download_raw_data.download_tile(s3, raw_tile_bucket, raw_tile_path, outdir,
bias=None)

Download single raw data image file from S3 to local directory
Parameters

* s3 (S3.Resource) — A Boto3 S3 resource

4.3. Reference 21

CloudReg

e raw_tile_bucket (str)— Name of bucket with raw data
e raw_tile_path (str) — Path to raw data file in S3 bucket
* outdir (str) — Local path to store raw data

* bias (np.ndarray, optional)-Bias correction multiplied by image before saving. Must
be same size as image Defaults to None.

cloudreg.scripts.download_raw_data.download_tiles(tiles, raw_tile_bucket, outdir)

Download a chunk of tiles from S3 to local storage
Parameters
* tiles (1ist of str)— S3 paths to raw data files to download
e raw_tile_bucket (str)— Name of bucket where raw data live
* outdir (str) — Local path to store raw data at

cloudreg.scripts.download_raw_data.get_all_s3_objects(s3, **base_kwargs)
Get all s3 objects with base_kwargs

Parameters
s3 (boto3.S3.client) — an active S3 Client.

Yields
dict — Response object with keys to objects if there are any.

cloudreg.scripts.download_raw_data.get_list_of_files_to_process(in_bucket_name, prefix,
channel)

Get paths of all raw data files for a given channel.
Parameters
e in_bucket_name (str) — S3 bucket in which raw data live
» prefix (str) — Prefix for the S3 path at which raw data live
e channel (int) — Channel number to process

Returns
List of S3 paths for all raw data files

Return type
list of str

cloudreg.scripts.download_raw_data.get_out_path(in_path, outdir)
Get output path for given tile, maintaining folder structure for Terastitcher

Parameters
* in_path (str) — S3 key to raw tile
* outdir (str) — Path to local directory to store raw data

Returns
Path to store raw tile at.

Return type
str

cloudreg.scripts.download_data.download_data(s3_path, outfile, desired_resolution,
resample_isotropic=False, return_size=False)

Download whole precomputed volume from S3 at desired resolution and optionally resample data to be isotropic

22 Chapter 4. Documentation

CloudReg

Parameters
* s3_path (str) — S3 path to precomputed volume
» outfile (str) — Path to output file

e desired_resolution (int) — Lowest resolution (in nanometers) at which to download
data if desired_resolution isnt available.

» resample_isotropic (bool, optional) — If true, resample data to be isotropic at de-
sired_resolution.

Returns
Resoluton of downloaded data in microns

Return type
resolution

cloudreg.scripts.download_data.get_mip_at_res(vol, resolution)

Find the mip that is at least a given resolution
Parameters
* vol (cloudvolume. CloudVoluem)— CloudVolume object for desired precomputed volume
e resolution (int) — Desired resolution in nanometers

Returns
mip and resolution at that mip

Return type
tuple

4.3.4 Stitching

cloudreg.scripts.stitching.generate_stitching_commands (stitched_dir, stack_dir, metadata_s3_bucket,
metadata_s3_path, do_steps=2)

Generate Terastitcher stitching commands given COLM metadata files.
Parameters
e stitched_dir (str) — Path to store stitched data at.
e stack_dir (str) — Path to unstiched raw data.
e metadata_s3_bucket (str)— Name of S3 bucket in which metdata is located.
* metadata_s3_path (str) — Specific path to metadata files in the bucket

* do_steps (int, optional) — Represents which Terastitcher steps to run. Defaults to
ALL_STEPS (2).

Returns
Metadata and list of Terastitcher commands

Return type
tuple (dict, list of str)

cloudreg.scripts.stitching.get_metadata(path_to_config)
Get metadata from COLM config file.

Parameters
path_to_config (str) — Path to Experiment.ini file (COLM config file)

4.3. Reference 23

CloudReg

Returns
Metadata information.

Return type
dict

cloudreg.scripts.stitching.get_scanned_cells (fname_scanned_cells)

Read Scanned Cells.txt file from COLM into list

Parameters
fname_scanned_cells (str) — Path to scanned cells file.

Returns
Indicates whether or not a given location has been imaged on the COLM

Return type
list of lists

cloudreg.scripts.stitching.run_terastitcher (raw_data_path, stitched_data_path, input_s3_path,
log_s3_path=None, stitch_only=False,
compute_only=False)

Run Terastitcher commands to fully stitch raw data.
Parameters
e raw_data_path (str) — Path to raw data (VWO folder for COLM data)
e stitched_data_path (str) — Path to where stitched data will be stored
e input_s3_path (str) — S3 Path to where raw data and metadata live

* log_s3_path (str, optional) — S3 path to store intermediates and XML files for
Terastitcher. Defaults to None.

e stitch_only (bool, optional)— Do stitching only if True. Defaults to False.
e compute_only (bool, optional)- Compute alignments only if True. Defaults to False.

Returns
Metadata associated with this sample from Experiment.ini file (COLM data)

Return type
dict

cloudreg.scripts.stitching.write_import_xml (fname_importxml, scanned_matrix, metadata)
Write xml_import file for Terastitcher based on COLM metadata
Parameters
» fname_importxml (str) — Path to wheer xml_import.xml should be stored

» scanned_matrix (1ist of lists)— List of locations that have been imaged by the mi-
croscope

» metadata (dict) — Metadata assocated with this COLM experiment

cloudreg.scripts.stitching.write_terastitcher_commands (fname_ts, metadata, stitched_dir, do_steps)

Generate Terastitcher commands from metadata
Parameters
e fname_ts (str) — Path to bash file to store Terastitcher commands

* metadata (dict) — Metadata information about experiment

24 Chapter 4. Documentation

CloudReg

e stitched_dir (str) — Path to where stitched data will be stored
* do_steps (int) — Indicator of which steps to run

Returns
List of Terastitcher commands to run

Return type
list of str

This program uses a main subordinate approach to consume a queue of elaborations using teraconverter Copyright
(c) 2016: Massimiliano Guarrasi (1), Giulio Iannello (2), Alessandro Bria (2) (1): CINECA (2): University Campus
Bio-Medico of Rome The program was made in the framework of the HUMAN BRAIN PROJECT. All rights reserved.

EXAMPLE of usage (X is the major version, Y is the minor version, Z is the patch): mpirun -np XX python paracon-
verterX.Y.Z.py -s=source_volume -d=destination_path —depth=DD —height=HH —width=WW —sfmt=source_format
—dfmt=destinatiopn_format —resolutions=RR

where: - XX is the desided level of parallelism plus 1 (for the main process) - DD, HH, WW are the values used to
partition the image for parallel execution - source and destination format are allowed formats for teraconverter - RR
are the requested resolutions (according to the convention used by teraconverter) See teraconverter documentation for
more details

* Change Log *

v2.3.2 2017-10-07 - added management of —isotropic option in the partition algorithm - corrected a bug in function

‘collect_instructions’

v2.2.2 2017-10-07 - revisted platform dependent instructions

v2.2.1 2017-09-19 - added option —info to display the memory needed in GBytes without performing any
conversion

v2.2 2017-03-12 - the suspend/resume mechanism can be disabled by changing the value of variable
‘suspend_resume_enabled’ (the mechanism is enebled if True, disabled if False

* changed the policy to manage dataset partition and eliminated additional parameter to specify the desired degree
of parallelism which is now directly passed by the main

v2.1 2017-02-06 - implemented a suspend/resume mechanism

the mechanism can slow down parallel execution if the dataset chunks are relatively small to avoid this a
ram disk can be used to save the status (substitute the name ‘output_nae’ at line 953 with the path of the
ram disk)

v2.0 2016-12-10 - dataset partitioning takes into account the source format in order to avoid that the

same image region is read by different TeraConverter instances; requires an additional parameter in the
command line (see EXAMPLE of usage above)

cloudreg.scripts.paraconverter.check_double_quote (inpstring)

Check if some strings needs of a double quote (if some space are inside the string, it will need to be inside two
double quote). E.g.: —stmt="TIFF (unstitched, 3D)” Input:

inpstring: input string or array of strings

Output:
newstring = new string (or array of strings) corrected by quoting if necessary

4.3. Reference 25

CloudReg

cloudreg.scripts.paraconverter.check_flag(params, string, delete)
Check if a parameter (string) was beeen declared in the line of commands (params) and return the associated
value. If delete is true the related string will be deleted If string is not present, return None Input:

params = list of parameters from original command line string = string to be searched delete = Boolean
variable to check if the selected string must be deleted after copied in value variable

Output:
value = parameter associated to the selected string

cloudreg.scripts.paraconverter.collect_instructions(inst)

Collect the remanent part of a list of strings in a unique string Input:

inst = Input list of strings

QOutput:
results = String containing all the elements of inst

cloudreg.scripts.paraconverter.create_commands (gi_np, info=False)
Create commands to run in parallel Input: Output:
first_string = String to initialize parallel computation list_string = Dictionary of strings containing
the command lines to process the data. E.G.: {i:command[i]} len_arr = Dictionary containing ele-
ments like {index:[size_width(i),size_height(i),size_depth(i)]......} final_string = String to merge all
metadadata
cloudreg.scripts.paraconverter.create_sizes(size, wb, max_res, norest=False)
Create a 3D array containing the size for each tile on the desidered direction Input:
start_wb = Start parameter for b size = size (in pixel) of the input immage wb = Rough depth for the
tiles in the desidered direction max_res = Maximum level of resolution available (integer) norest =

Boolean variable to chech if we need of the last array element (if it is different from the preavious
one)

Output:
arr = Array containing the size for each tile on the desidered direction

cloudreg.scripts.paraconverter.create_starts_end(array, start_point=0, open_dx=True)
Create arrays containing all the starting and ending indexes for the tiles on the desidered direction Input:
array = Array containing the size for each tile on the desidered direction start_point = Starting index

for the input immage (optional) open_dx = If true (the default value) ==> ending indexes = subsequent
starting indexes ==> Open end

Output:
star_arr = Array containing all the starting indexes for the tiles on the desidered direction end_arr = Array
containing all the ending indexes for the tiles on the desidered direction

cloudreg.scripts.paraconverter.eliminate_double_quote (inpstring)
Check if the string is already enclosed by quotes Input:

inpstring: input string or array of strings

Output:
newstring = new string (or array of strings) corrected by eliminating enclosing quotes if any

26 Chapter 4. Documentation

CloudReg

cloudreg.scripts.paraconverter.extract_params()

Extract parameter from line of commands. Output:
params = list of parameters from original command line

cloudreg.scripts.paraconverter.generate_final_command (input_name, output_name, wbil, wb2, wb3,
sfmt, dfint, iresolutions, max_res, params,
last_string)

Generate last command line to merge metadata Input:

input_name = Input file output_name = Standard output directory wbl = Axprossimative depth for
the tiles wb2 = Axprossimative height for the tiles wb3 = Axprossimative width for the tiles sfmt
= Source format dfmt = Destination format iresolutions = List of integer values containing all the
desidered values for level of resolution max_res = Maximum level of resolution available (integer)
params = Array containing instruction derived from the remanent part of the imput string last_string
= Remanent part of the input string

Output:
final_string = Command line to merge metadata

cloudreg.scripts.paraconverter.generate_first_command (input_name, output_name, wbi, wb2, wb3,
sfmt, dfmt, iresolutions, max_res, params,
last_string)

Generate first command line Input:

input_name = Input file output_name = Standard output directory wbl = Axprossimative depth for
the tiles wb2 = Axprossimative height for the tiles wb3 = Axprossimative width for the tiles sfmt
= Source format dfmt = Destination format iresolutions = List of integer values containing all the
desidered values for level of resolution max_res = Maximum level of resolution available (integer)
params = Array containing instruction derived from the remanent part of the imput string last_string
= Remanent part of the input string

Output:
first_string = Command line to preprocess the data

cloudreg.scripts.paraconverter.generate_parallel_command (start_list, end_list, input_name,
output_name, wbl, wb2, wb3, sfmt, dfmt,
iresolutions, max_res, params,
last_string)

Generate the list of parallel command lines Input:

start_list = Ordered list of lists of starting points. E.g.: [[width_in[0], height_in[0], depth_in[0]],
[width_in[1], height_in[1], depth_in[1]], ... ,[width_in[N], height_in[N], depth_in[N]]] end_list =
Ordered list of lists of starting points. E.g.: [[width_fin[0], height_fin[0], depth_in[0]], [width_fin[1],
height_fin[1], depth_fin[1]], ... ,[width_fin[N], height_fin[N], depth_fin[N]]] input_name = Input file
output_name = Standard output directory wb1 = Axprossimative depth for the tiles wb2 = Axprossi-
mative height for the tiles wb3 = Axprossimative width for the tiles sfmt = Source format dfmt =
Destination format iresolutions = List of integer values containing all the desidered values for level
of resolution max_res = Maximum level of resolution available (integer) params = Array containing
instruction derived from the remanent part of the imput string last_string = Remanent part of the input
string

Output:
list_string = Dictionary of strings containing the command lines to process the data. E.G.: {i:command][i] }

4.3. Reference 27

CloudReg

cloudreg.scripts.paraconverter.main(queue, rs_fname)

Dispatch the work among processors. Input:
queue = list of job inputs

cloudreg.scripts.paraconverter.opt_algo(D, w, n)
Solves the tiling problem patitioning the interval [0, D-1] into k subintervals of size 2*n b and one final subinterval
of sizer =D - k 2”n b Input:

D = dimension of the original array w = approximate estimation of value for b n = desideres level of
refinement (e.g. : n =0 => maximum level of refinement; n =1 => number of point divided by 2"1=2;
n = 2 => number of point divided by 2/2=4;)

Output:

arr_sizes = [b, r, k, itera]
b = normalized size of standard blocks (size of standard blocks = b * 2”n) r = rest (if not equal to 0, is
the size of the last block) k = number of standard blocks itera = number of itarations to converge

cloudreg.scripts.paraconverter.pop_left (dictionary)
Cuts the first element of dictionary and returns its first element (key:value) Input/Output:

dictionary = Dictionary of string containing the command lines to use. After reading the dictionary
the first element is deleted from the dictionary.

Output:
first_el = first element (values) of the dictionary

cloudreg.scripts.paraconverter.prep_array(wb, r, k)

Create a 1D array containing the number of elements per tile. Input:

wb = size of standard blocks r = rest (if not equal to 0, is the size of the last block) k = number of
standard blocks

Output:
array = A list containing the number of element for every tiles.

cloudreg.scripts.paraconverter.read_item(input_arr, item, default, message=True)

Read the value related to “item” from the list “input_arr” and if no item are present set it to “default”. Please
note: The function convert the output to the same type of “default” variable Input:

input_arr = List of strings from imput command line item = The item to search default = The default
value if no item are present

Output:
value = Output value for the selected item

cloudreg.scripts.paraconverter.read_params()
Read parameters from input string and from a file Input: Output:

input_name = Input file output_name = Standard output directory wb1l = Axprossimative depth for
the tiles wb2 = Axprossimative height for the tiles wb3 = Axprossimative width for the tiles sfmt
= Source format dfmt = Destination format iresolutions = List of integer values containing all the
desidered values for level of resolution max_res = Maximum level of resolution available (integer)
params = Array containing instruction derived from the remanent part of the imput string last_string
= Remanent part of the input string height = Height of the input immage width = Width of the input
immage depth = Depth of the input immage

28 Chapter 4. Documentation

CloudReg

cloudreg.scripts.paraconverter.score_function(params)

Assigns a score value with the formula:
score = 100*N_of_voxel/max(N_of_voxel)

Input:
params = dictionary containing {input_name : [Nx,Ny,Nz]}

Output:
scores = dictionary containing {input_name : score}

cloudreg.scripts.paraconverter.search_for_entry(string_2_serch, file_in, nline=0)

Extract from the input file (file_in) up to the line number nline (if declared) the value assigned to string_2_serch.
Input:

string_2_serch = string (or list of string) containing the variable to search (e.g. ‘HEIGHT=") file_in
= name of the file containing the information we neeed (e.g: prova.txt or /pico/home/prova.txt) nline
= optional, number of the final row of the file we need to analyze

Output:
Output = value or (list of values) assigned to the variable conteined in string_2_serch

cloudreg.scripts.paraconverter.sort_elaborations(scores)

Create a list of input_name sorted by score Input:

scores = dictionary of the form {input_name : score}

Output:
scored = a list of input_name sorted by score

cloudreg.scripts.paraconverter.sort_list(len_lI, len_2, len_3)

Create a list sorting the indexes along three directions: Input:

len_1 = Number of elements of the array for the first index len_2 = Number of elements of the array
for the second index len_3 = Number of elements of the array for the third index

Output:
order = An ordered list containig an a sequence of lists of 3 alements (one for each direction) that identify
the position on the local index

cloudreg.scripts.paraconverter.sort_start_end(start_I, start_2, start_3, end_I, end_2, end_3, size_1,
size_2, size_3)

Sort start points and edn point in two lists of elements Input:

start_1 = Array containing all the starting indexes for the tiles on the Depth direction start_2 = Array
containing all the starting indexes for the tiles on the Height direction start_3 = Array containing all
the starting indexes for the tiles on the Width direction end_1 = Array containing all the ending indexes
for the tiles on the Depth direction end_2 = Array containing all the ending indexes for the tiles on the
Height direction end_3 = Array containing all the ending indexes for the tiles on the Width direction
size_1 = Array containing the size of the tile in the Depth direction size_2 = Array containing the size
of the tile in the Height direction size_3 = Array containing the size of the tile in the Width direction

QOutput:
order = An ordered list containig an a sequence of lists of 3 alements (one for each direction) that identify
the position on the local index start_list = Ordered list of lists of starting points. E.g.: [[width_in[0],
height_in[0], depth_in[O]], [width_in[1], height_in[1], depth_in[1]], ... ,[width_in[N], height_in[N],
depth_in[N]]] end_list = Ordered list of lists of starting points. E.g.: [[width_fin[0], height_fin[0],

4.3. Reference 29

CloudReg

depth_in[O0]], [width_fin[1], height_fin[1], depth_fin[1]], ... ,[width_fin[N], height_fin[N], depth_fin[N]]]
len_arr = Dictionary containing elements like {index:[size_width(i),size_height(i),size_depth(i)],.....}

cloudreg.scripts.paraconverter.sort_work(params, priority)
Returns a dictionary as params but ordered by score Input:

params = dictionary of the form {input_name : value} priority = the list of input_name ordered by
score calculated by score_function

Output:
sorted_dict = the same dictionary as params but ordered by score

cloudreg.scripts.paraconverter.subordinate()

Subordinate process.

cloudreg.scripts.paraconverter.worker (input_file)

Perform elaboration for each element of the queue. Input/Output
input_file = command to be executed

This program uses a main subordinate approach to consume a queue of elaborations using teraconverter Copyright
(c) 2016: Massimiliano Guarrasi (1), Giulio Iannello (2), Alessandro Bria (2) (1): CINECA (2): University Campus
Bio-Medico of Rome The program was made in the framework of the HUMAN BRAIN PROJECT. All rights reserved.

EXAMPLE of usage (X is the major version, Y is the minor version, Z is the patch):

For align step: mpirun -np XX python ParastitcherX.Y.Z.py -2 —projin=xml_import_file —projout=xml_displcomp_file
[-sV=VV] [-=sH=HH] [-sD=DD] [-imin_channel=C] [...]

where: - XX is the desided level of parallelism plus 1 (for the main process) - VV, HH, DD are the half size of the NCC
map along V, H, and D directions, respectively - C is the input channel to be used for align computation

For fusion step: mpirun -np XX python ParastitcherX.Y.Z.py -6 —projin=xml_import_file —volout=destination_folder

—volout_plugin=format_string [—slicewidth=WWW] [—sliceheight=HHH] [-slicedepth=DDD] [-resolutions=RRR] [
-]

where: - format_string is one the formats: “TIFF (series, 2D)”, “TIFF, tiled, 2D, “TIFF, tiled, 3D”, “TIFF, tiled,

4D”, - DDD, HHH, WWW are the values used to partition the image for parallel execution - RRR are the requested
resolutions (according to the convention used by teraconverter) See teraconverter documentation for more details

* Change Log *

2018-09-05. Giulio. @ CHSNGED on non-Windows platforms ‘prefix’ is automatically switched to °./’ if executables
are not in the system path 2018-08-16. Giulio. @CHANGED command line interface: parameters for step 6 are
the same than the sequential implementation 2018-08-16. Giulio. @ADDED debug control 2018-08-07. Giulio.
@CREATED from parastitcher2.0.3.py and paraconverter2.3.2.py

terastitcher -2 —projin=/Users/iannello/Home/Windows/myTeraStitcher/TestData/Ailey/blending/test_00_01_02_03/xml_import_org.xm
—projout=/Users/iannello/Home/Windows/my TeraStitcher/TestData/Ailey/blending/test_00_01_02_03/xml_displcomp_seq.xml

mpirun -np 3 python /Users/iannello/Home/Windows/paratools/parastitcher2.0.3.py -2 —pro-
jin=/Users/iannello/Home/Windows/myTeraStitcher/TestData/Ailey/blending/test_00_01_02_03/xml_import_org.xml
—projout=/Users/iannello/Home/Windows/myTeraStitcher/TestData/Ailey/blending/test_00_01_02_03/xml_displcomp_par2.xml
mpirun -np 3 python /Users/iannello/Home/Windows/paratools/Parastitcher3.0.0.py -2 —pro-
jin=/Users/iannello/Home/Windows/myTeraStitcher/TestData/Ailey/blending/test_00_01_02_03/xml_import_org.xml
—projout=/Users/iannello/Home/Windows/myTeraStitcher/TestData/Ailey/blending/test_00_01_02_03/xml_displcomp_par2.xml

30 Chapter 4. Documentation

CloudReg

teraconverter —sfmt="TIFF (unstitched, 3D)” -s=/Users/iannello/Home/Windows/myTeraStitcher/TestData/Ailey/blending/test_00_01_0:
—dfmt="TIFF (series, 2D)” -d=/Users/iannello/Home/Windows/myTeraStitcher/TestData/temp/result_pl -resolu-
tions=012 —depth=256 —width=256 —height=256

mpirun -np 3 python /Users/iannello/Home/Windows/paratools/paraconverter2.3.2.py —sfmt="TIFF (unstitched, 3D)”
-s=/Users/iannello/Home/Windows/myTeraStitcher/TestData/Ailey/blending/test_00_01_02_03/xml_merging.xml
—dfmt="TIFF (tiled, 3D)” -d=/Users/iannello/Home/Windows/my TeraStitcher/TestData/temp/result_p1
—resolutions=012 —depth=256 —width=256 —height=256 mpirun -np 3 python
/Users/iannello/Home/Windows/paratools/Parastitcher3.0.0.py = -6 = —sfmt="TIFF (unstitched, 3Dy’ -
s=/Users/iannello/Home/Windows/myTeraStitcher/TestData/Ailey/blending/test_00_01_02_03/xml_merging.xml
—dfmt="TIFF (tiled, 3D)” -d=/Users/iannello/Home/Windows/myTeraStitcher/TestData/temp/result_pl -resolu-
tions=012 —depth=256 —width=256 —height=256
cloudreg.scripts.parastitcher.check_double_quote (inpstring)
Check if some strings needs of a double quote (if some space are inside the string, it will need to be inside two
double quote). E.g.: —sfmt="TIFF (unstitched, 3D)” Input:

inpstring: input string or array of strings

Output:
newstring = new string (or array of strings) corrected by quoting if necessary

cloudreg.scripts.parastitcher.check_flag(params, string, delete)
Check if a parameter (string) was beeen declared in the line of commands (params) and return the associated
value. If delete is true the related string will be deleted If string is not present, return None Input:

params = list of parameters from original command line string = string to be searched delete = Boolean
variable to check if the selected string must be deleted after copied in value variable

Output:
value = parameter associated to the selected string

cloudreg.scripts.parastitcher.collect_instructions (inst)

Collect the remanent part of a list of strings in a unique string Input:

inst = Input list of strings

Output:
results = String containing all the elements of inst

cloudreg.scripts.parastitcher.create_commands (gi_np, info=False)

Create commands to run in parallel Input: Output:

first_string = String to initialize parallel computation list_string = Dictionary of strings containing
the command lines to process the data. E.G.: {i:command[i]} len_arr = Dictionary containing ele-
ments like {index:[size_width(i),size_height(i),size_depth(i)],.....} final_string = String to merge all
metadadata

cloudreg.scripts.parastitcher.create_sizes(size, wb, max_res, norest=False)
Create a 3D array containing the size for each tile on the desidered direction Input:
start_wb = Start parameter for b size = size (in pixel) of the input immage wb = Rough depth for the
tiles in the desidered direction max_res = Maximum level of resolution available (integer) norest =

Boolean variable to chech if we need of the last array element (if it is different from the preavious
one)

4.3. Reference 31

CloudReg

Output:
arr = Array containing the size for each tile on the desidered direction

cloudreg.scripts.parastitcher.create_starts_end(array, start_point=0, open_dx=True)
Create arrays containing all the starting and ending indexes for the tiles on the desidered direction Input:
array = Array containing the size for each tile on the desidered direction start_point = Starting index

for the input immage (optional) open_dx = If true (the default value) ==> ending indexes = subsequent
starting indexes ==> Open end

Output:
star_arr = Array containing all the starting indexes for the tiles on the desidered direction end_arr = Array
containing all the ending indexes for the tiles on the desidered direction

cloudreg.scripts.parastitcher.do_additional_partition(nprocs, nrows, ncols, n_ss)

All parameters should be float

cloudreg.scripts.parastitcher.eliminate_double_quote (inpstring)
Check if the string is already enclosed by quotes Input:

inpstring: input string or array of strings

Output:
newstring = new string (or array of strings) corrected by eliminating enclosing quotes if any

cloudreg.scripts.parastitcher.extract_np (inputf)

extract the number of slices along z from the input xml file.

cloudreg.scripts.parastitcher.extract_params()

Extract parameter from line of commands. Output:
params = list of parameters from original command line

cloudreg.scripts.parastitcher. find_last_slash(string)

Search for / in a string. If one or more / was found, divide the string in a list of two string: the first containf all
the character at left of the last / (included), and the second contains the remanent part of the text. If no / was
found, the first element of the list will be set to ©’

cloudreg.scripts.parastitcher.generate_final_command (input_name, output_name, wbl, wb2, wb3,
sfmt, dfmt, iresolutions, max_res, params,
last_string)

Generate last command line to merge metadata Input:

input_name = Input file output_name = Standard output directory wbl = Axprossimative depth for
the tiles wb2 = Axprossimative height for the tiles wb3 = Axprossimative width for the tiles sfmt
= Source format dfmt = Destination format iresolutions = List of integer values containing all the
desidered values for level of resolution max_res = Maximum level of resolution available (integer)
params = Array containing instruction derived from the remanent part of the imput string last_string
= Remanent part of the input string

Output:
final_string = Command line to merge metadata

32 Chapter 4. Documentation

CloudReg

cloudreg.scripts.parastitcher.generate_first_command(input_name, output_name, wbl, wb2, wb3,
sfmt, dfimt, iresolutions, max_res, params,
last_string)

Generate first command line Input:

input_name = Input file output_name = Standard output directory wbl = Axprossimative depth for
the tiles wb2 = Axprossimative height for the tiles wb3 = Axprossimative width for the tiles sfmt
= Source format dfmt = Destination format iresolutions = List of integer values containing all the
desidered values for level of resolution max_res = Maximum level of resolution available (integer)
params = Array containing instruction derived from the remanent part of the imput string last_string
= Remanent part of the input string

Output:
first_string = Command line to preprocess the data

cloudreg.scripts.parastitcher.generate_parallel_command (start_list, end_list, input_name,
output_name, wbl, wb2, wb3, sfmt, dfmt,
iresolutions, max_res, params, last_string)

Generate the list of parallel command lines Input:

start_list = Ordered list of lists of starting points. E.g.: [[width_in[0], height_in[0], depth_in[0]],
[width_in[1], height_in[1], depth_in[1]], ... ,[width_in[N], height_in[N], depth_in[N]]] end_list =
Ordered list of lists of starting points. E.g.: [[width_fin[0], height_fin[0], depth_in[0]], [width_fin[1],
height_fin[1], depth_fin[1]], ... ,[width_fin[N], height_fin[N], depth_fin[N]]] input_name = Input file
output_name = Standard output directory wb1 = Axprossimative depth for the tiles wb2 = Axprossi-
mative height for the tiles wb3 = Axprossimative width for the tiles sfmt = Source format dfmt =
Destination format iresolutions = List of integer values containing all the desidered values for level
of resolution max_res = Maximum level of resolution available (integer) params = Array containing
instruction derived from the remanent part of the imput string last_string = Remanent part of the input
string

Output:
list_string = Dictionary of strings containing the command lines to process the data. E.G.: {i:command[i]}

cloudreg.scripts.parastitcher.main_step2 (queue)
dispatch the work among processors
queue is a list of job input
cloudreg.scripts.parastitcher.main_step6 (queue, rs_fname)
Dispatch the work among processors. Input:
queue = list of job inputs

cloudreg.scripts.parastitcher.opt_algo(D, w, n)

Solves the tiling problem patitioning the interval [0, D-1] into k subintervals of size 2n b and one final subinterval
of size r =D - k 2”n b Input:

D = dimension of the original array w = approximate estimation of value for b n = desideres level of
refinement (e.g. : n =0 => maximum level of refinement; n =1 => number of point divided by 2*1=2;
n = 2 => number of point divided by 22=4;)

Output:

arr_sizes = [b, 1, k, itera]
b = normalized size of standard blocks (size of standard blocks = b * 2*n) r = rest (if not equal to 0, is
the size of the last block) k = number of standard blocks itera = number of itarations to converge

4.3. Reference 33

CloudReg

cloudreg.scripts.parastitcher.partition(m, n, N)

return the number of partitions along V and H, respectively that are optimal to partition a block of size m_V x
n_H in at least P sub-blocks

m: block size along V n: block size along H N: number of required partitions

return: p_m, p_n: the number of partitions along V and H, respectively

PRE:

cloudreg.scripts.parastitcher.pop_left (dictionary)

Cuts the first element of dictionary and returns its first element (key:value) Input/Output:
dictionary = Dictionary of string containing the command lines to use. After reading the dictionary
the first element is deleted from the dictionary.

QOutput:
first_el = first element (values) of the dictionary

cloudreg.scripts.parastitcher.prep_array(wb, r, k)

Create a 1D array containing the number of elements per tile. Input:
wb = size of standard blocks r = rest (if not equal to 0, is the size of the last block) k = number of
standard blocks

Output:
array = A list containing the number of element for every tiles.

cloudreg.scripts.parastitcher.read_input (inputf, nline=0)

Reads the file included in inputf at least up to line number nline (if declared).

cloudreg.scripts.parastitcher.read_item(input_arr, item, default, message=True)

Read the value related to “item” from the list “input_arr” and if no item are present set it to “default”. Please
note: The function convert the output to the same type of “default” variable Input:

input_arr = List of strings from imput command line item = The item to search default = The default

value if no item are present

Output:
value = Output value for the selected item

cloudreg.scripts.parastitcher.read_params()

Read parameters from input string and from a file Input: Output:

input_name = Input file output_name = Standard output directory wbl = Axprossimative depth for
the tiles wb2 = Axprossimative height for the tiles wb3 = Axprossimative width for the tiles sfmt
= Source format dfmt = Destination format iresolutions = List of integer values containing all the
desidered values for level of resolution max_res = Maximum level of resolution available (integer)
params = Array containing instruction derived from the remanent part of the imput string last_string
= Remanent part of the input string height = Height of the input immage width = Width of the input
immage depth = Depth of the input immage

cloudreg.scripts.parastitcher.score_function(params)

Assigns a score value with the formula:

score = 100*N_of_voxel/max(N_of_voxel)

34

Chapter 4. Documentation

CloudReg

Input:
params = dictionary containing {input_name : [Nx,Ny,Nz]}

Output:
scores = dictionary containing {input_name : score}

cloudreg.scripts.parastitcher.search_for_entry(string_2_serch, file_in, nline=0)

Extract from the input file (file_in) up to the line number nline (if declared) the value assigned to string_2_serch.
Input:

string_2_serch = string (or list of string) containing the variable to search (e.g. ‘HEIGHT=") file_in
= name of the file containing the information we neeed (e.g: prova.txt or /pico/home/prova.txt) nline
= optional, number of the final row of the file we need to analyze

Output:
Output = value or (list of values) assigned to the variable conteined in string_2_serch

cloudreg.scripts.parastitcher.sort_elaborations(scores)
Create a list of input_name sorted by score Input:

scores = dictionary of the form {input_name : score}

Output:
scored = a list of input_name sorted by score

cloudreg.scripts.parastitcher.sort_list(len_I,len_2, len_3)
Create a list sorting the indexes along three directions: Input:

len_1 = Number of elements of the array for the first index len_2 = Number of elements of the array
for the second index len_3 = Number of elements of the array for the third index

Output:
order = An ordered list containig an a sequence of lists of 3 alements (one for each direction) that identify
the position on the local index

cloudreg.scripts.parastitcher.sort_start_end(start_I, start 2, start_3, end_1, end_2, end_3, size_1,
size_2, size_3)

Sort start points and edn point in two lists of elements Input:

start_1 = Array containing all the starting indexes for the tiles on the Depth direction start_2 = Array
containing all the starting indexes for the tiles on the Height direction start_3 = Array containing all
the starting indexes for the tiles on the Width direction end_1 = Array containing all the ending indexes
for the tiles on the Depth direction end_2 = Array containing all the ending indexes for the tiles on the
Height direction end_3 = Array containing all the ending indexes for the tiles on the Width direction
size_1 = Array containing the size of the tile in the Depth direction size_2 = Array containing the size
of the tile in the Height direction size_3 = Array containing the size of the tile in the Width direction

Output:
order = An ordered list containig an a sequence of lists of 3 alements (one for each direction) that identify
the position on the local index start_list = Ordered list of lists of starting points. E.g.: [[width_in[0],
height_in[0], depth_in[0]], [width_in[1], height_in[1], depth_in[1]], ... ,[width_in[N], height_in[N],
depth_in[N]]] end_list = Ordered list of lists of starting points. E.g.: [[width_fin[0], height_fin[0],
depth_in[O]], [width_fin[1], height_fin[1], depth_fin[1]], ... ,[width_fin[N], height_fin[N], depth_fin[N]]]
len_arr = Dictionary containing elements like {index:[size_width(i),size_height(i),size_depth(i)],.....}

4.3. Reference 35

CloudReg

cloudreg.scripts.parastitcher.sort_work(params, priority)
Returns a dictionary as params but ordered by score Input:

params = dictionary of the form {input_name : value} priority = the list of input_name ordered by
score calculated by score_function

Output:
sorted_dict = the same dictionary as params but ordered by score

cloudreg.scripts.parastitcher.subordinate()

Subordinate process.

cloudreg.scripts.parastitcher.worker (input_file)

Perform elaboration for each element of the queue. Input/Output

input_file = command to be executed

4.3.5 Registration

cloudreg.scripts.run_registration_ec2.run_registration(ssh_key_path, instance_id, instance_type,
input_s3_path, atlas_s3_path,
parcellation_s3_path, atlas_orientation,
output_s3_path, log_s3_path,
initial_translation, initial_rotation,
orientation, fixed_scale,
missing_data_correction, grid_correction,
bias_correction, sigma_regularization,
num_iterations, registration_resolution)

Run EM-LDDMM registration on an AWS EC2 instance
Parameters
» ssh_key_path (str) — Local path to ssh key for this server
e instance_id (str) — ID of EC2 instance to use

* instance_type (str)— AWS EC2 instance type. Recommended is r5.8xlarge

input_s3_path (str) — S3 path to precomputed data to be registered

atlas_s3_path (str) — S3 path to atlas data to register to

parcellation_s3_path (str) — S3 path to corresponding atlas parcellations

output_s3_path (str) - S3 path to store precomputed volume of atlas transformed to input
data

* log_s3_path (str) — S3 path to store intermediates at

initial_translation (list of float) - Initial translations in X,y,z of input data

e initial_rotation (1ist) — Initial rotation in x,y,z for input data

orientation (str) — 3-letter orientation of input data

fixed_scale (float) — Isotropic scale factor on input data

missing_data_correction (bool) — Perform missing data correction to ignore zeros in
image

» grid_correction (bool) — Perform grid correction (for COLM data)

36 Chapter 4. Documentation

CloudReg

e bias_correction (bool) — Perform illumination correction

* sigma_regularization (float) — Regularization constat in cost function. Higher regu-
larization constant means less regularization

e num_iterations (int)— Number of iterations of EM-LDDMM to run
» registration_resolution (int)— Minimum resolution at which the registration is run.

cloudreg.scripts.registration.get_affine_matrix(translation, rotation, from_orientation,
to_orientation, fixed_scale, s3_path, center=False)

Get Neuroglancer-compatible affine matrix transfrming precomputed volume given set of translations and rota-
tions

Parameters
* translation (I1ist of float) - X,y,z translations respectively in microns
e rotation (1ist of float) - x,y,z rotations respectively in degrees
e from_orientation (str) — 3-letter orientation of source data
* to_orientation (str) — 3-letter orientation of target data
» fixed_scale (float) — Isotropic scale factor
* s3_path (str) — S3 path to precomputed volume for source data
» center (bool, optional)-If true, center image at it’s origin. Defaults to False.

Returns
Returns 4x4 affine matrix representing the given translations and rotations of source data at S3
path

Return type
np.ndarray

cloudreg.scripts.registration.register(input_s3_path, atlas_s3_path, parcellation_s3_path,
atlas_orientation, output_s3_path, log_s3_path, orientation,
fixed_scale, translation, rotation, missing_data_correction,
grid_correction, bias_correction, regularization, num_iterations,
registration_resolution, output_local_path='~/")

Run EM-LDDMM registration on precomputed volume at input_s3_path
Parameters
* input_s3_path (str)— S3 path to precomputed data to be registered
» atlas_s3_path (str) — S3 path to atlas to register to.
» parcellation_s3_path (str)— S3 path to atlas to register to.
e atlas_orientation (str) — 3-letter orientation of atlas

» output_s3_path (str) - S3 path to store precomputed volume of atlas transformed to input
data

* log_s3_path (str) — S3 path to store intermediates at

* orientation (str) — 3-letter orientation of input data

» fixed_scale (float) — Isotropic scale factor on input data

e translation (1ist of float) - Initial translations in x,y,z of input data

e rotation (1ist) — Initial rotation in X,y,z for input data

4.3. Reference 37

CloudReg

» missing_data_correction (bool) — Perform missing data correction to ignore zeros in
image

» grid_correction (bool) — Perform grid correction (for COLM data)
e bias_correction (bool) — Perform illumination correction

» regularization (float) — Regularization constat in cost function. Higher regularization
constant means less regularization

e num_iterations (int)— Number of iterations of EM-LDDMM to run

* registration_resolution (int) — Minimum resolution at which the registration is run.

4.3.6 Utility Functions

class cloudreg.scripts.util.S3Url (url)

>>> s = S3Url("s3://bucket/hello/world")
>>> s.bucket

'bucket’

>>> s.key

'hello/world’

>>> s.url

's3://bucket/hello/world’

>>> s = S3Url("s3://bucket/hello/world?qwel=3#ddd")
>>> s.bucket

'bucket’

>>> s.key

'hello/world?qwel=3#ddd’'

>>> s.url

's3://bucket/hello/world?qwel=3#ddd’

>>> s = S3Url("s3://bucket/hello/world#foo?bar=2")
>>> s.key

'hello/world#foo?bar=2"

>>> s.url

's3://bucket/hello/world#foo?bar=2"

Attributes

bucket
key
url

cloudreg.scripts.util.aws_cli(*cmd)
Run an AWS CLI command

Raises
RuntimeError — Error running aws cli command.

cloudreg.scripts.util.calc_hierarchy_levels(img_size, lowest_res=1024)

Compute max number of mips for given chunk size

Parameters

38 Chapter 4. Documentation

CloudReg

» img_size (1list) - Size of image in x,y,z
* lowest_res (int, optional)— minimum chunk size in XY. Defaults to 1024.

Returns
Number of mips

Return type
int

cloudreg.scripts.util.chunks(/, n)

Convert a list into n-size chunks (last chunk may have less than n elements)
Parameters
e 1 (1ist)— List to chunk
* n (int) — Elements per chunk

Yields
list — n-size chunk from I (last chunk may have fewer than n elements)

cloudreg.scripts.util.download_terastitcher_files(s3_path, local_path)

Download terastitcher files from S3
Parameters
* s3_path (str) — S3 path where Terastitcher files might live
* local_path (str) — Local path to save Terastitcher files

Returns
True if files exist at s3 path, else False

Return type
bool

cloudreg.scripts.util.get_bias_field(img, mask=None, scale=1.0, niters=[50, 50, 50, 50])
Correct bias field in image using the N4ITK algorithm (http://bit.ly/20FwAun)
Parameters
» img (SimpleITK.Image) — Input image with bias field.

* mask (SimpleITK.Image, optional)-Ifused, the bias field will only be corrected within
the mask. (the default is None, which results in the whole image being corrected.)

» scale (float, optional) — Scale at which to compute the bias correction. (the default
is 0.25, which results in bias correction computed on an image downsampled to 1/4 of it’s
original size)

e niters (list, optional)-— Number of iterations per resolution. Each additional entry in
the list adds an additional resolution at which the bias is estimated. (the default is [50, 50,
50, 50] which results in 50 iterations per resolution at 4 resolutions)

Returns
Bias-corrected image that has the same size and spacing as the input image.

Return type
SimpleITK.Image

cloudreg.scripts.util.get_matching_s3_keys (bucket, prefix=", suffix="")
Generate the keys in an S3 bucket.

Parameters

4.3. Reference 39

http://bit.ly/2oFwAun

CloudReg

e bucket (str)— Name of the S3 bucket.
» prefix (str)— Only fetch keys that start with this prefix (optional).
» suffix (str) — Only fetch keys that end with this suffix (optional).

Yields
str — S3 keys if they exist with given prefix and suffix

cloudreg.scripts.util.get_reorientations (in_orient, out_orient)
Generates a list of axes flips and swaps to convert from in_orient to out_orient

Parameters
* in_orient (str) — 3-letter input orientation
* out_orient (str) — 3-letter output orientation

Raises
Exception — Exception raised if in_orient or out_orient not valid

Returns
New axis order and whether or not each axis needs to be flipped

Return type
tuple of lists

cloudreg.scripts.util.imgResample (img, spacing, size=[], useNearest=False, origin=None,
outsideValue=0)

Resample image to certain spacing and size.
Parameters
» img (SimpleITK.Image) — Input 3D image.
* spacing (1ist) — List of length 3 indicating the voxel spacing as [X, y, z]

» size (list, optional) — List of length 3 indicating the number of voxels per dim [x, y,
z] (the default is [], which will use compute the appropriate size based on the spacing.)

» useNearest (bool, optional) - If True use nearest neighbor interpolation. (the default
is False, which will use linear interpolation.)

e origin (list, optional) - The location in physical space representing the [0,0,0] voxel
in the input image. (the default is [0,0,0])

» outsideValue (int, optional) - value used to pad are outside image (the default is 0)

Returns
Resampled input image.

Return type
SimpleITK.Image

cloudreg.scripts.util.run_command_on_server (command, ssh_key_path, ip_address, username="ubuntu")

Run command on remote server
Parameters
e command (str) — Command to run
» ssh_key_path (str) — Local path to ssh key neeed for this server
e ip_address (str) — IP Address of server to connect to

e username (str, optional)— Username on remote server. Defaults to “ubuntu”.

40 Chapter 4. Documentation

CloudReg

Returns
Errors encountered on remote server if any

Return type
str

cloudreg.scripts.util.start_ec2_instance (instance_id, instance_type)

Start an EC2 instance
Parameters
e instance_id (str) — ID of EC2 instance to start
* instance_type (str)— Type of EC2 instance to start

Returns
Public IP address of EC2 instance

Return type
str

cloudreg.scripts.util.tqdm_joblib(zgdm_object)

Context manager to patch joblib to report into tqdm progress bar given as argument

cloudreg.scripts.util.upload_file_to_s3(local_path, s3_bucket, s3_key)
Upload file to S3 from local storage

Parameters
* local_path (str) — Local path to file
* s3_bucket (str) — S3 bucket name
» s3_key (str) — S3 key to store file at

class cloudreg.scripts.visualization.S3Url (url)

>>> s = S3Url("s3://bucket/hello/world"™)
>>> s.bucket

'bucket’

>>> s.key

'hello/world'

>>> s.url

's3://bucket/hello/world’

>>> s = S3Url("s3://bucket/hello/world?qwel=3#ddd")
>>> s.bucket

'bucket’

>>> s.key

'hello/world?qwel=3#ddd’

>>> s.url

's3://bucket/hello/world?qwel=3#ddd"

>>> s = S3Url("s3://bucket/hello/world#foo?bar=2")
>>> s.key

'hello/world#foo?bar=2"

>>> s.url

's3://bucket/hello/world#foo?bar=2"

4.3. Reference 41

CloudReg

Attributes

bucket
key
url

cloudreg.scripts.visualization.create_viz_link(s3_layer_paths, affine_matrices=None,
shader_controls=None,
url="https://json.neurodata.io/vl’, neu-
roglancer_link="https://ara.viz.neurodata.io/?json_url=',
output_resolution=array({0.0001, 0.0001, 0.0001]))

Create a viz link from S3 layer paths using Neurodata’s deployment of Neuroglancer and Neurodata’s json state

server.
Parameters

» s3_layer_paths (1ist) — List of S3 paths to precomputed volumes to include in the viz
link.

e affine_matrices (1ist of np.ndarray, optional)— List of affine matrices associ-
ated with each layer. Affine matrices should be 3x3 for 2D data and 4x4 for 3D data. Defaults
to None.

» shader_controls (str, optional) — String of shader controls compliant with Neu-
roglancer shader controls. Defaults to None.

e url (str, optional) — URL to JSON state server to store Neueroglancer JSON state.
Defaults to “https://json.neurodata.io/v1”.

* neuroglancer_link (str, optional)- URL for Neuroglancer deployment, default is to
use Neurodata deployment of Neuroglancer.. Defaults to “https://ara.viz.neurodata.io/ ?json_
url=".

* output_resolution (np.ndarray, optional)- Desired output resolution for all layers
in nanometers. Defaults to np.array([le-4] * 3) nanometers.

Returns
viz link to data
Return type

str

cloudreg.scripts.visualization.get_layer_json(s3_layer_path, affine_matrix, output_resolution)

Generate Neuroglancer JSON for single layer.
Parameters
* s3_layer_path (str) — S3 path to precomputed layer.

o affine_matrix (np.ndarray)— Affine matrix to apply to current layer. Translation in this
matrix is in microns.

* output_resolution (np.ndarray) — desired output resolution to visualize layer at.

Returns
Neuroglancer JSON for single layer.

Return type
dict

42 Chapter 4. Documentation

https://json.neurodata.io/v1
https://ara.viz.neurodata.io/?json_url=
https://ara.viz.neurodata.io/?json_url=

CloudReg

cloudreg.scripts.visualization.get_neuroglancer_json(s3_layer_paths, affine_matrices,
output_resolution)

Generate Neuroglancer state json.
Parameters
* s3_layer_paths (1ist of str)- List of S3 paths to precomputed layers.
» affine matrices (1ist of np.ndarray) - List of affine matrices for each layer.

* output_resolution (np.ndarray) — Resolution we want to visualize at for all layers.

Returns
Neuroglancer state JSON

Return type
dict

cloudreg.scripts.visualization.get_output_dimensions_json(output_resolution)

Convert output dimensions to Neuroglancer JSON

Parameters
output_resolution (np.ndarray) — desired output resolution for precomputed data.

Returns
Neuroglancer JSON for output dimensions

Return type
dict

4.4 License

CloudReg is distributed with Apache 2.0 license.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

(continues on next page)

4.4. License 43

CloudReg

(continued from previous page)

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,

(continues on next page)

44

Chapter 4.

Documentation

CloudReg

(continued from previous page)

worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,

(continues on next page)

4.4. License 45

CloudReg

(continued from previous page)

reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

(continues on next page)

46 Chapter 4. Documentation

CloudReg

(continued from previous page)

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

4.4. License 47

CloudReg

48 Chapter 4. Documentation

CHAPTER
FIVE

INDICES AND TABLES

* genindex
* modindex

¢ search

49

CloudReg

50 Chapter 5. Indices and tables

c

cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.

scripts.
scripts.
scripts.
.download_raw_data, 21
.ingest_image_stack, 38
.paraconverter, 25
.parastitcher, 30
scripts.
.registration_accuracy, 38

scripts
scripts
scripts
scripts

scripts
scripts
scripts

scripts.

scripts
scripts

correct_raw_data, 20
correct_stitched_data, 21
download_data, 22

registration, 37

.run_colm_pipeline_ec2, 19
.run_registration_ec2, 36
stitching, 23

.util, 38

.visualization, 41

PYTHON MODULE INDEX

51

CloudReg

52 Python Module Index

A

aws_cli () (in module cloudreg.scripts.util), 38

C

calc_hierarchy_levels()

(in

cloudreg.scripts.util), 38

check_double_quote()

(in

cloudreg.scripts.paraconverter), 25

check_double_quote()

(in

cloudreg.scripts.parastitcher), 31

check_flag()

(in

cloudreg.scripts.paraconverter), 25

check_flag(Q

(in

cloudreg.scripts.parastitcher), 31
chunks () (in module cloudreg.scripts.util), 39

cloudreg.scripts.

module, 20

cloudreg.scripts.

module, 21
cloudreg.scripts
module, 22
cloudreg.scripts
module, 21

cloudreg.scripts.

module, 38
cloudreg.scripts
module, 25
cloudreg.scripts
module, 30
cloudreg.scripts
module, 37
cloudreg.scripts
module, 38
cloudreg.scripts
module, 19
cloudreg.scripts
module, 36

cloudreg.scripts.

module, 23
cloudreg.scripts
module, 38
cloudreg.scripts

correct_raw_data

correct_stitched_data

.download_data

.download_raw_data

ingest_image_stack

.paraconverter
.parastitcher
.registration
.registration_accuracy
.run_colm_pipeline_ec2

.run_registration_ec2

stitching

util

.visualization

module

module

module

module

module

INDEX

module, 41
collect_instructions() (in module
cloudreg.scripts.paraconverter), 26
collect_instructions() (in module
cloudreg.scripts.parastitcher), 31
correct_raw_data() (in module

cloudreg.scripts.correct_raw_data), 20
correct_stitched_data() (in module
cloudreg.scripts.correct_stitched_data), 21
correct_tile() (in module
cloudreg.scripts.correct_raw_data), 20
correct_tiles() (in
cloudreg.scripts.correct_raw_data), 20

module

create_commands () (in module
cloudreg.scripts.paraconverter), 26
create_commands () (in module
cloudreg.scripts.parastitcher), 31
create_sizes() (in module
cloudreg.scripts.paraconverter), 26
create_sizes() (in module
cloudreg.scripts.parastitcher), 31
create_starts_end() (in module
cloudreg.scripts.paraconverter), 26
create_starts_end() (in module
cloudreg.scripts.parastitcher), 32
create_viz_link() (in module
cloudreg.scripts.visualization), 42
D
do_additional_partition() (in module
cloudreg.scripts.parastitcher), 32
download_data() (in module
cloudreg.scripts.download_data), 22
download_raw_data() (in module

cloudreg.scripts.download_raw_data), 21

download_terastitcher_files() (in module
cloudreg.scripts.util), 39
download_tile() (in module

cloudreg.scripts.download_raw_data), 21
download_tiles() (in module
cloudreg.scripts.download_raw_data), 22

53

CloudReg

E

eliminate_double_quote() (in module
cloudreg.scripts.paraconverter), 26
eliminate_double_quote() (in module
cloudreg.scripts.parastitcher), 32
extract_np() (in module
cloudreg.scripts.parastitcher), 32
extract_params() (in module
cloudreg.scripts.paraconverter), 26
extract_params() (in module
cloudreg.scripts.parastitcher), 32
F
find_last_slash() (in module
cloudreg.scripts.parastitcher), 32
G
generate_final_command() (in module
cloudreg.scripts.paraconverter), 27
generate_final_command() (in module
cloudreg.scripts.parastitcher), 32
generate_first_command() (in module
cloudreg.scripts.paraconverter), 27
generate_first_command() (in module
cloudreg.scripts.parastitcher), 32
generate_parallel_command() (in module
cloudreg.scripts.paraconverter), 27
generate_parallel_command() (in module
cloudreg.scripts.parastitcher), 33
generate_stitching_commands() (in module
cloudreg.scripts.stitching), 23
get_affine_matrix() (in module
cloudreg.scripts.registration), 37
get_all_s3_objects() (in module

cloudreg.scripts.download_raw_data), 22
get_background_value() (in module

cloudreg.scripts.correct_raw_data), 20
get_bias_£field() (in module cloudreg.scripts.util), 39

get_layer_json() (in module
cloudreg.scripts.visualization), 42
get_list_of_files_to_process() (in module

cloudreg.scripts.download_raw_data), 22
get_matching_s3_keys() (in module
cloudreg.scripts.util), 39
get_metadata() (in module cloudreg.scripts.stitching),
23

get_mip_at_res() (in module
cloudreg.scripts.download_data), 23

get_neuroglancer_json() (in module
cloudreg.scripts.visualization), 42

get_out_path() (in module

cloudreg.scripts.download_raw_data), 22
get_output_dimensions_json() (in module
cloudreg.scripts.visualization), 43

get_reorientations() (in module
cloudreg.scripts.util), 40
get_scanned_cells() (in module

cloudreg.scripts.stitching), 24

imgResample () (in module cloudreg.scripts.util), 40

M

main() (in module cloudreg.scripts.paraconverter), 277

main_step2() (in module
cloudreg.scripts.parastitcher), 33
main_step6() (in module

cloudreg.scripts.parastitcher), 33
module
cloudreg.scripts.
cloudreg.scripts.
21
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
cloudreg.
38
cloudreg.
19
cloudreg.
cloudreg.
cloudreg.
cloudreg.

O

opt_algo() (in module cloudreg.scripts.paraconverter),
28

opt_algo() (in module cloudreg.scripts.parastitcher),
33

correct_raw_data, 20
correct_stitched_data,

scripts.download_data, 22
scripts.download_raw_data, 21
scripts.ingest_image_stack, 38
scripts.paraconverter, 25
scripts.parastitcher, 30
scripts.registration, 37
scripts.registration_accuracy,
scripts.run_colm_pipeline_ec2,
scripts.run_registration_ec2, 36
scripts.stitching, 23
scripts.util, 38
scripts.visualization, 41

P

partition() (in module cloudreg.scripts.parastitcher),

34

pop_left () (in module cloudreg.scripts.paraconverter),
28

pop_left() (in module cloudreg.scripts.parastitcher),
34

prep_array() (in module
cloudreg.scripts.paraconverter), 28

prep_array() (in module
cloudreg.scripts.parastitcher), 34

process_slice() (in module

cloudreg.scripts.correct_stitched_data), 21

54

Index

CloudReg

R

read_input () (in module
cloudreg.scripts.parastitcher), 34
read_item() (in module

cloudreg.scripts.paraconverter), 28
read_item() (in module cloudreg.scripts.parastitcher),
34

read_params () (in module
cloudreg.scripts.paraconverter), 28
read_params () (in module

cloudreg.scripts.parastitcher), 34
register () (in module cloudreg.scripts.registration), 37
run_colm_pipeline() (in module
cloudreg.scripts.run_colm_pipeline_ec2),
19

subordinate() (in module
cloudreg.scripts.parastitcher), 36
sum_tiles() (in module

cloudreg.scripts.correct_raw_data), 20

T

tqdm_joblib () (in module cloudreg.scripts.util), 41

U

upload_file_to_s3()
cloudreg.scripts.util), 41

(in module

W

worker () (in module cloudreg.scripts.paraconverter), 30
worker () (in module cloudreg.scripts.parastitcher), 36

run_command_on_server () (in module write_import_xml () (in module
_cloudr e.g.scr ipts.util), 40) cloudreg.scripts.stitching), 24
run_registration() (in module yrite terastitcher_commands() (in module
cloudreg.scripts.run_registration_ec2), 36 cloudreg.scripts.stitching), 24
run_terastitcher() (in module
cloudreg.scripts.stitching), 24
S
S3Url (class in cloudreg.scripts.util), 38
S3Url (class in cloudreg.scripts.visualization), 41
score_function() (in module
cloudreg.scripts.paraconverter), 29
score_function() (in module
cloudreg.scripts.parastitcher), 34
search_for_entry() (in module
cloudreg.scripts.paraconverter), 29
search_for_entry() (in module
cloudreg.scripts.parastitcher), 35
sort_elaborations() (in module
cloudreg.scripts.paraconverter), 29
sort_elaborations() (in module
cloudreg.scripts.parastitcher), 35
sort_list() (in module
cloudreg.scripts.paraconverter), 29
sort_list() (in module cloudreg.scripts.parastitcher),
35
sort_start_end() (in module
cloudreg.scripts.paraconverter), 29
sort_start_end() (in module
cloudreg.scripts.parastitcher), 35
sort_work() (in module
cloudreg.scripts.paraconverter), 30
sort_work() (in module cloudreg.scripts.parastitcher),
35
start_ec2_instance() (in module
cloudreg.scripts.util), 41
subordinate() (in module
cloudreg.scripts.paraconverter), 30
Index 55

	Motivation
	Pipeline Overview
	Example Results
	Documentation
	Setup
	Setup (Cloud)
	Requirements
	Create AWS account
	Create IAM Role
	Create IAM User
	Create S3 Bucket
	Set up CORS on S3 Bucket containing processed data/results
	Set up Docker EC2 instance
	Set up MATLAB EC2 instance
	Set up AWS CloudFront
	Set up AWS Web Application Firewall
	Local machine setup

	Setup (Local)
	Requirements
	Local Machine Setup

	Run
	Cloud
	Preprocessing
	Registration
	Visualization

	Local
	Convert 2D image series to precomputed format
	Registration
	Visualization

	Reference
	COLM pipeline
	Intensity Correction
	Cloud Storage Input/Output
	Stitching
	* Change Log *
	* Change Log *

	Registration
	Utility Functions

	License

	Indices and tables
	Python Module Index
	Index

